34 research outputs found

    wKinMut: An integrated tool for the analysis and interpretation of mutations in human protein kinases

    Get PDF
    BACKGROUND: Protein kinases are involved in relevant physiological functions and a broad number of mutations in this superfamily have been reported in the literature to affect protein function and stability. Unfortunately, the exploration of the consequences on the phenotypes of each individual mutation remains a considerable challenge. RESULTS: The wKinMut web-server offers direct prediction of the potential pathogenicity of the mutations from a number of methods, including our recently developed prediction method based on the combination of information from a range of diverse sources, including physicochemical properties and functional annotations from FireDB and Swissprot and kinase-specific characteristics such as the membership to specific kinase groups, the annotation with disease-associated GO terms or the occurrence of the mutation in PFAM domains, and the relevance of the residues in determining kinase subfamily specificity from S3Det. This predictor yields interesting results that compare favourably with other methods in the field when applied to protein kinases. Together with the predictions, wKinMut offers a number of integrated services for the analysis of mutations. These include: the classification of the kinase, information about associations of the kinase with other proteins extracted from iHop, the mapping of the mutations onto PDB structures, pathogenicity records from a number of databases and the classification of mutations in large-scale cancer studies. Importantly, wKinMut is connected with the SNP2L system that extracts mentions of mutations directly from the literature, and therefore increases the possibilities of finding interesting functional information associated to the studied mutations. CONCLUSIONS: wKinMut facilitates the exploration of the information available about individual mutations by integrating prediction approaches with the automatic extraction of information from the literature (text mining) and several state-of-the-art databases. wKinMut has been used during the last year for the analysis of the consequences of mutations in the context of a number of cancer genome projects, including the recent analysis of Chronic Lymphocytic Leukemia cases and is publicly available at http://wkinmut.bioinfo.cnio.es

    An integrated approach to the interpretation of Single Amino Acid Polymorphisms within the framework of CATH and Gene3D

    Get PDF
    Background The phenotypic effects of sequence variations in protein-coding regions come about primarily via their effects on the resulting structures, for example by disrupting active sites or affecting structural stability. In order better to understand the mechanisms behind known mutant phenotypes, and predict the effects of novel variations, biologists need tools to gauge the impacts of DNA mutations in terms of their structural manifestation. Although many mutations occur within domains whose structure has been solved, many more occur within genes whose protein products have not been structurally characterized.<p></p> Results Here we present 3DSim (3D Structural Implication of Mutations), a database and web application facilitating the localization and visualization of single amino acid polymorphisms (SAAPs) mapped to protein structures even where the structure of the protein of interest is unknown. The server displays information on 6514 point mutations, 4865 of them known to be associated with disease. These polymorphisms are drawn from SAAPdb, which aggregates data from various sources including dbSNP and several pathogenic mutation databases. While the SAAPdb interface displays mutations on known structures, 3DSim projects mutations onto known sequence domains in Gene3D. This resource contains sequences annotated with domains predicted to belong to structural families in the CATH database. Mappings between domain sequences in Gene3D and known structures in CATH are obtained using a MUSCLE alignment. 1210 three-dimensional structures corresponding to CATH structural domains are currently included in 3DSim; these domains are distributed across 396 CATH superfamilies, and provide a comprehensive overview of the distribution of mutations in structural space.<p></p> Conclusion The server is publicly available at http://3DSim.bioinfo.cnio.es/ webcite. In addition, the database containing the mapping between SAAPdb, Gene3D and CATH is available on request and most of the functionality is available through programmatic web service access.<p></p&gt

    Deriving a mutation index of carcinogenicity using protein structure and protein interfaces

    Get PDF
    With the advent of Next Generation Sequencing the identification of mutations in the genomes of healthy and diseased tissues has become commonplace. While much progress has been made to elucidate the aetiology of disease processes in cancer, the contributions to disease that many individual mutations make remain to be characterised and their downstream consequences on cancer phenotypes remain to be understood. Missense mutations commonly occur in cancers and their consequences remain challenging to predict. However, this knowledge is becoming more vital, for both assessing disease progression and for stratifying drug treatment regimes. Coupled with structural data, comprehensive genomic databases of mutations such as the 1000 Genomes project and COSMIC give an opportunity to investigate general principles of how cancer mutations disrupt proteins and their interactions at the molecular and network level. We describe a comprehensive comparison of cancer and neutral missense mutations; by combining features derived from structural and interface properties we have developed a carcinogenicity predictor, InCa (Index of Carcinogenicity). Upon comparison with other methods, we observe that InCa can predict mutations that might not be detected by other methods. We also discuss general limitations shared by all predictors that attempt to predict driver mutations and discuss how this could impact high-throughput predictions. A web interface to a server implementation is publicly available at http://inca.icr.ac.uk/

    Is hospital discharge administrative data an appropriate source of information for cancer registries purposes? Some insights from four Spanish registries

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The use of hospital discharge administrative data (HDAD) has been recommended for automating, improving, even substituting, population-based cancer registries. The frequency of false positive and false negative cases recommends local validation.</p> <p>Methods</p> <p>The aim of this study was to detect newly diagnosed, false positive and false negative cases of cancer from hospital discharge claims, using four Spanish population-based cancer registries as the gold standard. Prostate cancer was used as a case study.</p> <p>Results</p> <p>A total of 2286 incident cases of prostate cancer registered in 2000 were used for validation. In the most sensitive algorithm (that using five diagnostic codes), estimates for Sensitivity ranged from 14.5% (CI95% 10.3-19.6) to 45.7% (CI95% 41.4-50.1). In the most predictive algorithm (that using five diagnostic and five surgical codes) Positive Predictive Value estimates ranged from 55.9% (CI95% 42.4-68.8) to 74.3% (CI95% 67.0-80.6). The most frequent reason for false positive cases was the number of prevalent cases inadequately considered as newly diagnosed cancers, ranging from 61.1% to 82.3% of false positive cases. The most frequent reason for false negative cases was related to the number of cases not attended in hospital settings. In this case, figures ranged from 34.4% to 69.7% of false negative cases, in the most predictive algorithm.</p> <p>Conclusions</p> <p>HDAD might be a helpful tool for cancer registries to reach their goals. The findings suggest that, for automating cancer registries, algorithms combining diagnoses and procedures are the best option. However, for cancer surveillance purposes, in those cancers like prostate cancer in which care is not only hospital-based, combining inpatient and outpatient information will be required.</p

    Prediction of Disease Causing Non-Synonymous SNPs by the Artificial Neural Network Predictor NetDiseaseSNP.

    Get PDF
    We have developed a sequence conservation-based artificial neural network predictor called NetDiseaseSNP which classifies nsSNPs as disease-causing or neutral. Our method uses the excellent alignment generation algorithm of SIFT to identify related sequences and a combination of 31 features assessing sequence conservation and the predicted surface accessibility to produce a single score which can be used to rank nsSNPs based on their potential to cause disease. NetDiseaseSNP classifies successfully disease-causing and neutral mutations. In addition, we show that NetDiseaseSNP discriminates cancer driver and passenger mutations satisfactorily. Our method outperforms other state-of-the-art methods on several disease/neutral datasets as well as on cancer driver/passenger mutation datasets and can thus be used to pinpoint and prioritize plausible disease candidates among nsSNPs for further investigation. NetDiseaseSNP is publicly available as an online tool as well as a web service: http://www.cbs.dtu.dk/services/NetDiseaseSN

    Sequence and Structure Signatures of Cancer Mutation Hotspots in Protein Kinases

    Get PDF
    Protein kinases are the most common protein domains implicated in cancer, where somatically acquired mutations are known to be functionally linked to a variety of cancers. Resequencing studies of protein kinase coding regions have emphasized the importance of sequence and structure determinants of cancer-causing kinase mutations in understanding of the mutation-dependent activation process. We have developed an integrated bioinformatics resource, which consolidated and mapped all currently available information on genetic modifications in protein kinase genes with sequence, structure and functional data. The integration of diverse data types provided a convenient framework for kinome-wide study of sequence-based and structure-based signatures of cancer mutations. The database-driven analysis has revealed a differential enrichment of SNPs categories in functional regions of the kinase domain, demonstrating that a significant number of cancer mutations could fall at structurally equivalent positions (mutational hotspots) within the catalytic core. We have also found that structurally conserved mutational hotspots can be shared by multiple kinase genes and are often enriched by cancer driver mutations with high oncogenic activity. Structural modeling and energetic analysis of the mutational hotspots have suggested a common molecular mechanism of kinase activation by cancer mutations, and have allowed to reconcile the experimental data. According to a proposed mechanism, structural effect of kinase mutations with a high oncogenic potential may manifest in a significant destabilization of the autoinhibited kinase form, which is likely to drive tumorigenesis at some level. Structure-based functional annotation and prediction of cancer mutation effects in protein kinases can facilitate an understanding of the mutation-dependent activation process and inform experimental studies exploring molecular pathology of tumorigenesis

    Pan-cancer analysis of whole genomes

    Get PDF
    Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale(1-3). Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4-5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter(4); identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation(5,6); analyses timings and patterns of tumour evolution(7); describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity(8,9); and evaluates a range of more-specialized features of cancer genomes(8,10-18).Peer reviewe

    Rare thoracic cancers, including peritoneum mesothelioma.

    No full text
    Abstract Rare thoracic cancers include those of the trachea, thymus and mesothelioma (including peritoneum mesothelioma). The aim of this study was to describe the incidence, prevalence and survival of rare thoracic tumours using a large database, which includes cancer patients diagnosed from 1978 to 2002, registered in 89 population-based cancer registries (CRs) and followed-up to 31st December 2003. Over 17,688 cases of rare thoracic cancers were selected based on the list of the RACECARE project. Mesothelioma was the most common tumour (19 per million per year) followed by epithelial tumours of the trachea and thymus (1.3 and 1.7, respectively). The age standardised incidence rates of epithelial tumours of the trachea was double in Eastern and Southern Europe versus the other European regions: 2 per million per year. Epithelial tumours of the thymus had the lowest incidence in Northern and Eastern Europe and UK and Ireland(1) and somewhat higher incidence in Central and Southern Europe.(2) Highest incidence in mesothelioma was seen in UK and Ireland(23) and lowest in Eastern Europe.(4) Patients with tumours of the thymus had the best prognosis (1-year survival 85%, 66% at 5 years). Five year survival was lowest for the mesothelioma 5% compared to 14% of patients with tumours of the trachea. Mesothelioma was the most prevalent rare cancer (12,000 cases), followed by thymus (7000) and trachea (1400). Cancer Registry (CR) data play an important role in revealing the burden of rare thoracic cancers and monitoring the effect of regulations on asbestos use and smoking related policies
    corecore